2
ºÎ»ê¸ÞµðŬ·´

ÀÏ»ó ¼Ó ¼öÇС¦»ê¾÷ ¼Ó ¼öÇÐ <7> ¼öÇаú ÀΰøÁö´É ¾Ë°í¸®Áò

¡®»ý°¢ÇÏ´Â ±â°è¡¯ °í¾ÈÇÑ Æ©¸µ, AI½Ã´ë ¼­¸·À» ¿­´Ù

  • ¿ì¿µÈ£ ±¹°¡¼ö¸®°úÇבּ¸¼Ò ÀÀ¿ë±âÇÏÆÀÀå
  •  |   ÀÔ·Â : 2022-08-02 19:57:04
  •  |   º»Áö 12¸é
  • ±ÛÀÚ Å©±â 
  • ±Û¾¾ Å©°Ô
  • ±Û¾¾ ÀÛ°Ô
- çȰí¾×±Ç 50ÆÄ¿îµå ÃÊ»ó Àι°
- ÄÄÇ»ÅÍ »©´àÀº ¡®Æ©¸µ¸Ó½Å¡¯ Á¦½Ã
- ¡®Á¤Áö¹®Á¦¡¯´Â °è»ê ºÒ°¡´É Áõ¸í

- ±¸ ¼Ò·Ã ¼öÇÐÀÚ ÆäÀÏ·¯¿Í ·¹¸¸
- ±×·¡ÇÁ µ¿Çü¹®Á¦ ¿¬±¸ Å« ¼º°ú
- ¡®½Å°æÇнÀ¡¯ ÁÖµÈ ¹æ¹ý·Ð¿¡ ±â¿©

- ¼öÇм­ Ãâ¹ßÇÑ AI¡¤ÄÄÇ»ÅͰúÇÐ
- µ¶¸³ ÈÄ¿£ »óÈ£ÀÛ¿ëÀ¸·Î ¹ßÀü
¾Ù·± Æ©¸µÀÇ »çÁøÀÌ ´ã±ä ¿µ±¹ 50ÆÄ¿îµå ÁöÆó. Æ©¸µÀº ÀΰøÁö´É(AI)ÄÄÇ»ÅÍ(¿À¸¥ÂÊ »çÁø)ÀÇ ±âº» °³³äÀ» ¼ö¸³ÇßÀ» »Ó¸¸ ¾Æ´Ï¶ó 2Â÷ ¼¼´ë´ëÀü ´ç½Ã 24½Ã°£¸¶´Ù ¹Ù²î´Â µ¶ÀϱºÀÇ ¡®¾Ö´Ï±×¸¶¡¯ ¾ÏÈ£¸¦ Ç®¾î³» ³ë¸£¸Áµð »ó·úÀÛÀüÀÇ ¼º°ø¿¡ Áö´ëÇÑ °øÀ» ¼¼¿ü´Ù´Â Æò°¡¸¦ ¹Þ°í ÀÖ´Ù. ±¹Á¦½Å¹® DB
¡áÀΰøÁö´ÉÀÇ ¼öÇÐÀû ±â¿ø

19¼¼±â ÈĹݺÎÅÍ ¼öÇа迡¼­´Â ¼öÇÐÀÇ ±âÃÊ Åä´ë¸¦ ¸¶·ÃÇϱâ À§ÇØ ¿©·¯ °üÁ¡ÀÌ Á¦½ÃµÆ´Ù. Ä­Åä¾î´Â ¼öÇÐÀÇ ±Ù°£ÀÌ µÇ´Â ÁýÇÕ·ÐÀ» â½ÃÇØ ¹«ÇÑÀÇ °³³äÀ» ¾ö¹ÐÇÏ°Ô ´Ù·ç°Ô µÇ¾úÀ¸³ª ·¯¼¿ÀÇ ÆÄ¶óµ¶½º°¡ Á¦±âµÊÀ¸·Î½á ÁýÇÕ·ÐÀ¸·ÎºÎÅÍ ½ÃÀ۵Ǵ ¼öÇÐÀÇ Ã¼°è¿¡ °üÇÑ ±Ùº» ³íÀǰ¡ ½ÃÀ۵ƴÙ. ³í¸®ÁÖÀÇ Á÷°üÁÖÀÇ Çü½ÄÁÖÀǰ¡ ´ëÇ¥ÀûÀÌ´Ù. ³í¸®ÁÖÀÇ´Â ¼öÇÐÀ» ³í¸®ÇÐÀÇ ÀϺηΠġȯÇÏ·Á´Â ³ë·ÂÀ̾ú°í, Á÷°üÁÖÀÇ´Â ¼öÇÐÀÌ Àΰ£ Á¤½ÅȰµ¿ÀÇ »ê¹°·Î, Á÷°üÀûÀ¸·Î ȤÀº º»´ÉÀûÀ¸·Î ÂüÀ¸·Î ¿©°ÜÁö´Â ¸íÁ¦¸¸ÀÌ ÂüÀÎ °ÍÀ¸·Î ÀνĵȴÙ. ¸¶Áö¸·À¸·Î Çü½ÄÁÖÀÇ´Â ¼öÇÐÀÌ ¸î °¡Áö °ø¸®·ÎºÎÅÍ Ãâ¹ßÇØ ±âÈ£ÀÇ ±â°èÀûÀÎ ¿¬¿ªÀ» ÅëÇØ ü°è¸¦ ¿Ï¼ºÇÒ ¼ö ÀÖ´Ù´Â ÁÖÀåÀÌ´Ù.

Çü½ÄÁÖÀÇ ´ëÇ¥ÀûÀÎ ¿ËÈ£ÀÚÀÎ µ¶ÀÏÀÇ ¼öÇÐÀÚ Èú¹öÆ®(David Hilbert)´Â 1928³â ¼¼°è¼öÇÐÀÚ´ëȸ(ICM¡¤International Congress of Mathematics)¿¡¼­ ¿Ïº®¼º(Completeness) ¹«¸ð¼ø¼º(Consistence) °áÁ¤¼º(Decidability)ÀÌ ´ãº¸µÇ´Â ¼öÇÐÀÇ °ø¸®Ã¼°è°¡ Á¸ÀçÇÒ °ÍÀ̶ó°í ÁÖÀåÇß´Ù. À̸¦ ¡®Èú¹öÆ® ÇÁ·Î±×·¥¡¯À̶ó°í ÇÑ´Ù. °£·«È÷ ¼³¸íÇϸé, ¿Ïº®¼ºÀº ¡°¸ðµç ÂüÀÎ ¸íÁ¦´Â °ø¸®·ÎºÎÅÍ µµÃâµÉ ¼ö ÀÖ´Ù¡±À̰í, ¹«¸ð¼ø¼ºÀº ¡°°ø¸®Ã¼°è°¡ ¸ð¼øÀÌ ¾øÀ½Àº ÁÖ¾îÁø °ø¸®°è ¾È¿¡¼­ Áõ¸íµÉ ¼ö ÀÖ´Ù¡±À̸ç, °áÁ¤¼ºÀº ¡°Ç×»ó ¸íÁ¦ÀÇ Âü°ú °ÅÁþÀ» °áÁ¤ÇÒ ¼ö ÀÖ´Â ¾Ë°í¸®ÁòÀÌ ÀÖ´Ù¡±´Â °ÍÀ¸·Î °áÁ¤¹®Á¦(Entscheidungsproblem)·Î ºÒ¸®¿î´Ù. ±×·¯³ª ºÒÇàÈ÷µµ ¸î ÇØ Áö³ªÁö ¾Ê¾Æ Èú¹öÆ®°¡ Á¦½ÃÇÑ ¼¼ °¡Áö ¿øÄ¢Àº ¸ðµÎ °¡´ÉÇÏÁö ¾ÊÀ½ÀÌ Áõ¸íµÈ´Ù.

¸ÕÀú, ±«µ¨(Kurt Godel)Àº ºÒ¿ÏÀü¼º Á¤¸®¸¦ Áõ¸íÇØ ¿Ïº®¼º°ú ¹«¸ð¼ø¼ºÀÌ ¼º¸³ÇÏÁö ¾ÊÀ½À» º¸¿´´Ù. ±«µ¨ÀÇ ºÒ¿ÏÀü¼º Á¤¸®´Â ±× ´ç½Ã ¼öÇаèÀÇ È­µÎ¿´´Ù. ´ç½Ã ¼öÇÐÀÇ Áß½ÉÀ̾ú´ø À¯·´ À¯¼öÇÑ ´ëÇÐÀÇ ¼öÇаú¿¡¼­´Â ±«µ¨ÀÇ Á¤¸®¿¡ °üÇÑ °­Àǰ¡ °³¼³µÇ¾ú´Âµ¥, ¿µ±¹ ÄÉÀӺ긮Áö ´ëÇÐÀÇ ¼öÇÐÀÚ ¾Ù·± Æ©¸µ(Alan Turing)Àº ÀڽŸ¸ÀÇ µ¶Æ¯ÇÑ ¹æ¹ýÀ¸·Î Èú¹öÆ®ÀÇ °áÁ¤¹®Á¦¿¡ °üÇÑ ÇØ´äÀ» Á¦½ÃÇß´Ù. Æ©¸µÀº ¡®Æ©¸µ¸Ó½Å¡¯À̶ó´Â °¡»óÀÇ ±â°è¸¦ °í¾ÈÇØ, °áÁ¤¹®Á¦¿¡ µîÀåÇÏ´Â ¡®¾Ë°í¸®Áò¡¯À» ÀÌ ±â°è°¡ °è»êÇÒ ¼ö ÀÖ´Ù´Â °ÍÀ¸·Î ±ÔÁ¤Çß´Ù. ±×´Â ¼ÒÀ§ ¡®Á¤Áö¹®Á¦(Halting problem)¡¯¶ó´Â °ÍÀº Æ©¸µ¸Ó½ÅÀ¸·Î °è»êµÉ ¼ö ¾øÀ½À» Áõ¸íÇÔÀ¸·Î½á Èú¹öÆ®ÀÇ °áÁ¤¹®Á¦¸¦ Ç®¾ú´Ù.

Æ©¸µ¸Ó½ÅÀº ÀÔ·ÂÇÒ ¼ýÀÚµéÀ» ÀûÀ» ¼ö ÀÖ´Â Å×ÀÌÇÁ, ÀÌµé ¼ýÀÚ¸¦ Àаųª ¾µ ¼ö ÀÖ´Â ¡®Çìµå¡¯, À̵éÀÇ ÀÛµ¿±ÔÄ¢À» °áÁ¤ÇÏ´Â ¡®Á¦¾î±â¡¯ µî ¼¼ °¡Áö ±¸¼º¿ä¼Ò¸¦ °¡Áö°í ÀÖ´Ù. ³î¶ø°Ôµµ ÀÌ·± °¢°¢ÀÇ ±¸¼º¿ä¼Ò´Â Çö´ëÄÄÇ»ÅÍ¿¡ ¸Þ¸ð¸®, Áß¾Óó¸®ÀåÄ¡(CPU) ¹× Űº¸µå, ¸ð´ÏÅÍ¿Í °°Àº ÀÔÃâ·Â ÀåÄ¡·Î °í½º¶õÈ÷ ÀçÇöµÇ°í ÀÖ´Ù. ÀÌÈÄ Æ©¸µÀº ±â°è°¡ °è»êÇÒ ¼ö ÀÖ´Â °Í, Áï ±â°èÁö´É¿¡ °üÇÑ ¿¬±¸¸¦ °è¼ÓÇØ ¡®À̹ÌÅ×ÀÌ¼Ç °ÔÀÓ(Æ©¸µÅ×½ºÆ®)¡¯ °°Àº ÀΰøÁö´É(AI) ¿¬±¸¿¡ ¸·´ëÇÑ ¿µÇâÀ» ³¢ÃÆ´Ù. ¿µ¶õÀºÇàÀº 2019³â »õ·Î¿î 50ÆÄ¿îµå ÁöÆóÀÇ ÃÊ»ó Àι°·Î Æ©¸µÀ» ¼±Á¤, ±×ÀÇ ¾÷ÀûÀ» ±â¸®°í ÀÖ´Ù.
Æ©¸µ¸Ó½ÅÀ» ¹°¸®ÀûÀ¸·Î ±¸ÇöÇÑ ¸ðµ¨. ¿µ¹® À§Å°Çǵð¾Æ
¡á±×·¡ÇÁ ½Å°æÇнÀ°ú µ¿Çü¹®Á¦

À§¿¡¼­ ¾ð±ÞµÈ ¼­¹æ¼¼°èÀÇ ¾Ù·± Æ©¸µÀ̳ª ¸¶ºó ºó½ºÅ°, Á¸ ¸ÅÄ«½Ã µîÀÌ ÀΰøÁö´É ¿¬±¸ÀÇ ½ÃÃÊ·Î ¿©°ÜÁö°í ÀÖÀ¸³ª, ¼Ò·ÃÀÇ ÀΰøÁö´É Ãʱ⠿¬±¸´Â ¾Ë·ÁÁöÁö ¾Ê¾Ò´Ù. 1960³â´ëÀÇ ÄÄÇ»ÅͰúÇÐÀÇ ÁÖ¿ä ¿¬±¸ÁÖÁ¦ Áß Çϳª´Â ¾Ë°í¸®ÁòÀÇ °è»êº¹Àâµµ¿´´Ù. Áï, ºü¸¥ ¾Ë°í¸®Áò°ú ±×·¸Áö ¾ÊÀº ¾Ë°í¸®ÁòÀ¸·Î ±¸ºÐÇÏ´Â ¿¬±¸¿´´Ù. ´Ù¾çÇÑ ¹®Á¦°¡ ºÐ·ùµÇ°í ÀÖ¾úÀ¸³ª ½ÇÁúÀûÀ¸·Î Áß¿äÇÑ ¹®Á¦¿´´ø ±×·¡ÇÁ µ¿Çü¹®Á¦¿¡ °üÇØ¼­´Â ºü¸¥ ¾Ë°í¸®ÁòÀÌ ¾Ë·ÁÁöÁö ¾Ê¾Ò´Ù. ±×·¡ÇÁ´Â Á¡°ú À̸¦ ¿¬°áÇÑ ¼±À» Ãß»óÈ­ÇÑ ¼öÇÐÀûÀÎ °³³äÀε¥, ±×·¡ÇÁ µ¿Çü¹®Á¦¶õ ÁÖ¾îÁø µÎ ±×·¡ÇÁ°¡ °°Àº ±×·¡ÇÁÀÎÁö¸¦ ÆÇº°ÇÏ´Â ¹®Á¦´Ù.

´ç½Ã ¼Ò·ÃÀÇ AI ¿¬±¸¼ÒÀÇ ÀþÀº ¼öÇÐÀÚÀÎ ¹ÙÀ̽º ÆäÀÏ·¯(Boris Weisfeiler)¿Í ·¹¸¸(Andrey Leman)Àº µÎ ±×·¡ÇÁ°¡ µ¿ÇüÀÏ ÇÊ¿äÁ¶°ÇÀ» °è»ê °¡´ÉÇÑ ºü¸¥ ¾Ë°í¸®ÁòÀ¸·Î ±¸ÇöÇß´Ù.

Áö±ÝÀº ¡®Weisfeiler-Leman algorithm¡¯À¸·Î ºÒ¸®°í ÀÖ´Ù. ÀÌ ¾Ë°í¸®ÁòÀº ÁÖ¾îÁø ±×·¡ÇÁÀÇ °¢°¢ÀÇ Á¡¿¡¼­ ÁÖº¯ÀÇ ¿¬°áµÈ Á¡ÀÇ Á¤º¸¸¦ ÃëÇÕÇÏ´Â °úÁ¤À» ÅëÇØ ±×·¡ÇÁ Ư¼ºÀ» ÆÄ¾ÇÇÏ´Â °Ô ÇÙ½ÉÀÌ´Ù. ÀÌ·± ±×·¡ÇÁÀÇ °¢ Á¡¿¡¼­ ÁÖº¯ÀÇ Á¤º¸¸¦ ÃëÇÕÇϰí ÀÚ½ÅÀÇ Á¤º¸¿Í °áÇÕÇÏ´Â ¡®Aggregate-Combine¡¯ ¹æ¹ýÀº Çö´ë ±×·¡ÇÁ ½Å°æÇнÀÀÇ ÁÖµÈ ¹æ¹ý·ÐÀÎ ¡®Massage Passing¡¯¿¡ ±×´ë·Î Àû¿ëµÇ°í ÀÖ´Ù.
ÁÖ¾îÁø µÎ °³ÀÇ ±×·¡ÇÁ G, G¡¯ Ãâó:Weisfeiler-Lehman Graph Kernels(2011, N. Shervashidze et al)
¡á¼öÇаú ÀΰøÁö´É ¿¬±¸ÀÇ »óÈ£ ÀÛ¿ë

À§¿¡¼­ ¾ð±ÞµÈ ¹Ù¿Í °°ÀÌ ÃÖ±Ù µö·¯´×À» ºñ·ÔÇÑ ÀΰøÁö´É ¾Ë°í¸®ÁòÀÇ Ãʱ⠿¬±¸´Â ¼öÇÐÀÇ ÇÑ ºÐ¾ß¿´°í, ÇöÀçµµ ¼öÇÐÀû ¿ø¸®³ª °³³äÀ» ±â¹ÝÀ¸·Î ¿¬±¸µÇ°í ÀÖ´Ù.

¾Ë°í¸®ÁòÀ̶õ ¿ë¾îµµ ¼öÇп¡¼­ Ãâ¹ßÇß°í ¾Ë°í¸®Áò¿¡¼­ ±âº»ÀûÀÎ ¼­¼úÀº ¼öÇÐÀûÀÎ ±âÈ£³ª ¿ë¾î·Î ±â¼úµÈ´Ù. ÀÌ·¸°Ô ÀΰøÁö´ÉÀ̳ª ÄÄÇ»ÅͰúÇÐÀº ¼öÇп¡¼­ Ãâ¹ßÇßÀ¸³ª ÀÌÈÄ ¼öÇаú´Â º°°³·Î µ¶¸³µÈ ¿¬±¸ ºÐ¾ß·Î ÀÚ¸®¸Å±è ÇßÀ¸¸ç ¼öÇаú Áö¼ÓÀûÀÎ »óÈ£ÀÛ¿ëÀ¸·Î ¹ßÀüÇϰí ÀÖ´Ù.

ÃÖ±Ù¿¡´Â ÀüÅëÀûÀ¸·Î ÀÚ¿¬°úÇÐÀ̳ª °øÇп¡ ³Î¸® Ȱ¿ëµÇ´Â ¼±Çü´ë¼öÇÐ ¹ÌÀûºÐÇÐ È®·ü·Ð µîÀÇ ºÐ¾ß»Ó ¾Æ´Ï¶ó ¼öÇÐÀÇ ¼¼ºÐµÈ Àü¹®ºÐ¾ßÀÎ (Æí)¹ÌºÐ¹æÁ¤½Ä ¹ÌºÐ±âÇÏ À§»ó¼öÇÐ µîÀÇ ¼ø¼ö¼öÇÐÀ¸·Î ºÐ·ùµÇ´ø ¼öÇÐÀÇ ¿µ¿ª±îÁöµµ Ȱ¿ëµÅ µö·¯´×À̳ª ¸Ó½Å·¯´× ¾Ë°í¸®Áò¿¡ Àû¿ëµÇ°í ÀÖ´Ù. ¶ÇÇÑ ¹Ý´ë·Î ÀÌ·¸°Ô °³¹ßµÈ ÀΰøÁö´É ¾Ë°í¸®ÁòÀ» Ȱ¿ëÇØ ÀüÅëÀûÀÎ ¼öÇÐ ¹®Á¦¸¦ ÇØ°áÇϰųª »õ·Î¿î ¼öÇÐÀû ¸íÁ¦¸¦ ¹ß°ßÇÏ´Â µ¥ µµ¿òÀ» ÁÖ°í ÀÖ´Ù.


# ¼ö¸®¿¬ ±âÇÏÇРȰ¿ë, ±×·¡ÇÁ½Å°æ¸Á ¿¬±¸¡¡

±âÇÏÀû µö·¯´×ÀÇ ´ë»ó. Ãâó:¡®Geometric Deep Learning Grids, Groups, Graphs, Geodesics, and Gauges¡¯ by Bronstein et al.
19¼¼±â ÈÄ¹Ý µ¶ÀÏÀÇ ¼öÇÐÀÚ Å¬¶óÀÎ(Felix Klein)Àº ÀüÅëÀûÀÎ À¯Å¬¸®µå ±âÇÏ¿Í 18, 19¼¼±â¸¦ °ÅÃÄ ¹ßÀüµÇ¾î¿Â ¿©·¯ ºñÀ¯Å¬¸®µå ±âÇϸ¦ ÅëÇÕÇØ ±âÇÏÇÐÀÇ Çö´ëÀû Àǹ̸¦ ºÎ¿©Çß´Ù. ¿¤¶û°Õ ÇÁ·Î±×·¥(Erlangen program)À̶ó°í ¸»ÇÏ´Â °ÍÀ¸·Î, Ŭ¶óÀÎÀº ±âÇÏÇÐÀÇ Áß¿äÇÑ °üÁ¡À» ´ë¼öÀûÀÎ °³³äÀÎ ±º(ÏØ) ÀÌ·ÐÀ» Ȱ¿ëÇØ ±âÇÏÀûÀÎ ´ë»óÀÇ º¯È¯ºÒº¯·®¿¡ µÎ¾î¾ß ÇÑ´Ù°í ÁÖÀåÇß´Ù. ÀÌ·± ±âÇÏÇп¡ °üÇÑ °üÁ¡Àº Çö´ëÀû °³³äÀÇ ±âÇÏÇп¡ ±Ù°£À» ÀÌ·ï À§»ó¼öÇÐ ¹ÌºÐ±âÇÏ ´ë¼ö±âÇÐ ¹ßÀü¿¡ Ãʼ®À» ¸¶·ÃÇß´Ù. ¶ÇÇÑ ¼öÇлӸ¸ ¾Æ´Ï¶ó ¿¡³ÊÁöÀÇ º¸Á¸¹ýÄ¢°ú ´ëμºÀÇ °ü°è¸¦ ¼³¸íÇÏ´Â ³úÅÍÀÇ Á¤¸®(Noether¡¯s theorem)¸¦ ÅëÇØ Çö´ë¹°¸®Çп¡µµ Å« ¿µÇâÀ» ÁÖ¾ú´Ù.

ÃÖ±Ù µ¥ÀÌÅͰúÇÐÀÇ ±â°èÇнÀ ºÐ¾ß¿¡¼­µµ ºñ½ÁÇÑ ½Ãµµ°¡ ÀÌ·ç¾îÁö°í ÀÖ´Ù. RNN(¼øÈ¯½Å°æ¸Á) CNN(ÇÕ¼º°ö½Å°æ¸Á) GNN(±×·¡ÇÁ½Å°æ¸Á) µîÀÇ ´Ù¾çÇÏ°Ô °³¹ßµÈ ¸¹Àº Á¾·ùÀÇ ±â°èÇнÀ ¿ø¸®¸¦ ±âÇÏÇÐÀÇ °üÁ¡¿¡¼­ Á¢±ÙÇØ ÅëÇÕÀûÀÎ ÇØ¼®À» ÇÏ·Á´Â ¿òÁ÷ÀÓÀÌ´Ù. ¼ÒÀ§ ¡®±âÇÏÀû µö·¯´×(Geometric deep learning)¡¯À̶ó°í ÇÑ´Ù.

±¹°¡¼ö¸®°úÇבּ¸¼Ò ÀÀ¿ë±âÇÏÆÀÀº ÀÌ·± ¿¬±¸ÁÖÁ¦ °¡¿îµ¥ ÇϳªÀÎ ±×·¡ÇÁ Ç¥Çö·Ð ¹× ±×·¡ÇÁ½Å°æ¸Á ¿¬±¸¸¦ ÁøÇàÇϰí ÀÖ´Ù. Çö½ÇÀÇ µ¥ÀÌÅÍ´Â ¿¢¼¿µ¥ÀÌÅÍ¿Í °°ÀÌ ¼ýÀÚÀÇ Á¤ÇüÀû ±¸Á¶»Ó¸¸ ¾Æ´Ï¶ó ±âÇÏÇÐÀûÀÎ ±¸Á¶¸¦ °¡Áø ±×·¡ÇÁ³ª ´Ù¾çü·Î Ç¥ÇöµÇ´Â °æ¿ì°¡ ¸¹´Ù. ¼Ò¼È³×Æ®¿öÅ© ³í¹®³×Æ®¿öÅ©(citation network) ±³Åë¸Á ³ú½Å°æ¸ÁÁöµµ ºÐÀÚ±¸Á¶ µîÀÌ ´ëÇ¥ÀûÀÎ ¿¹¶ó°í ÇÒ ¼ö ÀÖ´Ù. ¿¬±¸¼Ò´Â ÀÌ·± µ¥ÀÌÅÍÀÇ ºÐ¼®À» ÀüÅëÀûÀÎ ±â°èÇнÀ ¹æ¹ý·ÐÀ» ³Ñ¾î À§»ó¼öÇÐ, ±âÇÏÇÐ µî ½ÉÈ­µÈ ¼öÇÐ ¿¬±¸¿Í Á¢¸ñÇØ ±âÁ¸ ÀΰøÁö´É ¾Ë°í¸®Áò °³¼±, ±âÇÏÀû Ư¼ºÀ» º¸Á¸Çϴ ǥÇöÇнÀ ¾Ë°í¸®Áò °³¹ß ¹× ¾ÈÁ¤¼º Áõ¸íÀ¸·Î ¾Ë°í¸®ÁòÀÇ ½Å·Ú¼ºÀ» È®º¸ÇϰíÀÚ ³ë·ÂÇϰí ÀÖ´Ù.

¡Ø°øµ¿±âȹ:±¹Á¦½Å¹®¡¤±¹°¡¼ö¸®°úÇבּ¸¼Ò
¨Ï±¹Á¦½Å¹®(www.kookje.co.kr), ¹«´Ü ÀüÀç ¹× Àç¹èÆ÷ ±ÝÁö
±¹Á¦½Å¹® ´º½º·¹ÅÍ
±¹Á¦½Å¹® ³×À̹ö ´º½º½ºÅÄµå ±¸µ¶Çϱâ
±¹Á¦½Å¹® ³×À̹ö ±¸µ¶Çϱâ
¹¹¶ó³ë ´º½º

 ¸¹ÀÌ º» ´º½ºRSS

  1. 1¡®´õÇö´ë ºÎ»ê¡¯ Âø°ø 10¿ù¡æ¿¬¸» ¿¬±â ¿Ö?
  2. 2¡°Áֹο¡ ¹Ì¾ÈÇÏÁö¸¸ »ç¹«½Ç ö°Å ¾È µÅ¡± ¿ëÈ£¸¶À» Çϼҿ¬
  3. 3ºÎ»ê ÀÇ¿ø Àý¹Ý ¼öµµ±Ç ¡®¶Ê¶ÊÇÑ ÇÑ Ã¤¡¯¡¦8¸í Áö¿ª±¸ Àü¡¤¿ù¼¼
  4. 4¿ï»êµµ ¡®¾ßµµ¡¯ ³»³â ǻó½º µ¥ºß¡¦KBO 11¹øÂ° ±¸´Ü ±â´ë°¨ ¼Ö¼Ö
  5. 5¼­¿ï´ë »§ ¸Ô°í ¼ö´É ¡®È¨·±º¼¡¯¡¦¹«Àû ¼öÇèÇ¥·Î Ç×°ø±Ç ÇÒÀεµ
  6. 6BNKȸÀå ·Õ¸®½ºÆ® 7¸í ¼±Á¤¡¦¡°ÀýÂ÷´ë·Î °¡°Ú´Ù¡±
  7. 7¿ï»êÈ­·Â¹ßÀü¼Ò ºØ±« »ç°í¡¦ÀÛ¾÷ÀÚ 9¸í ¸Å¸ô 4¸í ±¸Á¶(Á¾ÇÕ)
  8. 8»ïÁø½Äǰ 200¸¸ ÁÖ °ø¸ð °èȹ¡¦ÁÖ´ç 6700~7600¿ø Èñ¸Á
  9. 9æ¨ ¡°³ëµ¿ÀÚ Á¤³â 65¼¼ ¿¬Àå µî ¾à¼Ó¡±(Á¾ÇÕ)
  10. 10ÀÌ·ûÂ÷ ÈÄ¸é¹øÈ£ÆÇ ´Ü¼Ó °­È­¡¦Àû¹ß Ä«¸Þ¶ó ºÎ»ê 120´ë Ãß°¡
  1. 1ºÎ»ê ÀÇ¿ø Àý¹Ý ¼öµµ±Ç ¡®¶Ê¶ÊÇÑ ÇÑ Ã¤¡¯¡¦8¸í Áö¿ª±¸ Àü¡¤¿ù¼¼
  2. 2æ¨ ¡°³ëµ¿ÀÚ Á¤³â 65¼¼ ¿¬Àå µî ¾à¼Ó¡±(Á¾ÇÕ)
  3. 3±èÇöÁö ¾È ³ª¿À°í ¡®¹èÄ¡±â¡¯·Î ÆÄÇࡦ´ëÅë·É½Ç ±¹°¨ ³­ÀåÆÇ(Á¾ÇÕ)
  4. 4À嵿Çõ ´ëÇ¥ ù ±¤ÁÖÇࡦ½Ã¹Î ¹Ý¹ß ¾Æ¼ö¶óÀå(Á¾ÇÕ)
  5. 5ÃѸ® ¡°´ë¹ÌÅõÀÚ, ±¹È¸ºñÁØ ´ë»ó ¾Æ³Ä¡±¡¦å¯ ¡°±¹È¸ ¹«½Ã, ÅõÀÚ ¾Æ´Ñ ¼Û±Ý¡±
  6. 6ì°´ëÅë·É, ¡®³»¶õƯ°Ë¡¯ ¼ö»ç±âÇÑ ¿¬Àå ½ÂÀΡ¦³»´Þ 14ÀϱîÁö
  7. 7Á¤Ã»·¡, ¿À´Ã ¹ÎÁÖ³ëÃѰú Á¤Ã¥°£´ãȸ¡¦Á¤³â ¿¬Àå µî ³íÀÇ
  8. 8ÃѸ® ¡°Á¤ºÎÀÚ»ê Çæ°ª ¸Å°¢ Àü¼öÁ¶»ç¡±¡¦Ä·ÄÚ ¡°¹æÄ§ µû¸¥ °Í¡±(Á¾ÇÕ)
  9. 9±¹¹æÀå°ü ¡°¿øÀÚ·ÂÃßÁø Àá¼öÇÔ ±¹³» °ÇÁ¶°¡ Çմ硱(Á¾ÇÕ)
  10. 10ÆÑÆ®½ÃÆ® ¾ðÁ¦ ³ª¿À³ª.. '¿øÀá' µµÀÔ µÎ°í ¹Ì±¹³» ³íÀÇ ±æ¾îÁø µí
  1. 1¡®´õÇö´ë ºÎ»ê¡¯ Âø°ø 10¿ù¡æ¿¬¸» ¿¬±â ¿Ö?
  2. 2¼­¿ï´ë »§ ¸Ô°í ¼ö´É ¡®È¨·±º¼¡¯¡¦¹«Àû ¼öÇèÇ¥·Î Ç×°ø±Ç ÇÒÀεµ
  3. 3BNKȸÀå ·Õ¸®½ºÆ® 7¸í ¼±Á¤¡¦¡°ÀýÂ÷´ë·Î °¡°Ú´Ù¡±
  4. 4»ïÁø½Äǰ 200¸¸ ÁÖ °ø¸ð °èȹ¡¦ÁÖ´ç 6700~7600¿ø Èñ¸Á
  5. 5¡°»çÀ̵åÄ« ¹ßµ¿ Áõ½Ã ȸº¹±â°£ Æò±Õ 21ÀÏ¡¦¹ÝµµÃ¼°¡ ÁÖµµÁÖ¡±
  6. 6ÇØ¿î´ë Æç¸¯½º¹ÙÀÌ STX È£ÅÚ ¸®´º¾ó
  7. 7±ú²ýÇÑ µµ½Ã ºÎ»êÀ» À§ÇÑ ¡®Ç÷α롯¡¦·Ôµ¥±×·ì 21°³ °è¿­»ç ÃÑÃ⵿
  8. 8ñé ¡®ºÏ±Ø ½ÇÅ©·Îµå¡¯ »ó¾÷¿îÇ× ¼º°ø¡¦ùÛµµ °íºÎ°¡ È­¹° È­ÁÖ È®º¸ Àý½Ç
  9. 9ÇÃ¶ó½ºÆ½ »¡´ë, ½ºÅ¸¹÷½º ±Íȯ
  10. 10°æ»ó¼öÁö 29°³¿ù° ÈæÀÚ¡¦9¿ù 19Á¶
  1. 1¡°Áֹο¡ ¹Ì¾ÈÇÏÁö¸¸ »ç¹«½Ç ö°Å ¾È µÅ¡± ¿ëÈ£¸¶À» Çϼҿ¬
  2. 2¿ï»êÈ­·Â¹ßÀü¼Ò ºØ±« »ç°í¡¦ÀÛ¾÷ÀÚ 9¸í ¸Å¸ô 4¸í ±¸Á¶(Á¾ÇÕ)
  3. 3ÀÌ·ûÂ÷ ÈÄ¸é¹øÈ£ÆÇ ´Ü¼Ó °­È­¡¦Àû¹ß Ä«¸Þ¶ó ºÎ»ê 120´ë Ãß°¡
  4. 4¹è¸®¾îÇÁ¸® Ű¿À½ºÅ© Àǹ«È­¿¡µµ¡¦ºÎ»ê °ø°ø½Ã¼³ 19´ë»Ó
  5. 5Á¤»ó üÁß È¯ÀÚ¿¡°Ôµµ ½Ä¿å¾ïÁ¦Á¦ ó¹æ ³²¹ß ÀÇ»ç 9¸í ÀÔ°Ç¡¤Ëþ ¼ÛÄ¡
  6. 6³ëÈÄÈ­·Î °¡µ¿ ¸ØÃá Ÿ¿ö¼­ ¡®Ä硯¡¦³ëµ¿Àå°ü °­Á¦¼ö»ç ½Ã»ç
  7. 7¡®¿ù±Þ¿¡¼± ¶Ã´Âµ¥¡¯¡¦»ç¾÷ÁÖ Ã¼³³¿¡ ±Ù·ÎÀÚ ±¹¹Î¿¬±Ý 17³â Áõ¹ß
  8. 8¿À´ÃÀÇ ³¯¾¾- 2025³â 11¿ù 7ÀÏ
  9. 9[¼Óº¸] "¿ï»êÈ­·Â ºØ±« »ç°í ¸Å¸ôÀÚ 1¸í ¼ûÁ®¡¦´Ù¸¥ 1¸í »ç¸Á ÃßÁ¤¡±
  10. 10ÀǷᡤ»ýȰºñ ¾î¸Ó´Ï Ȧ·Î ºÎ´ã¡¦»çȸº¹±Í À§ÇÑ µµ¿ò Àý½Ç
  1. 1¿ï»êµµ ¡®¾ßµµ¡¯ ³»³â ǻó½º µ¥ºß¡¦KBO 11¹øÂ° ±¸´Ü ±â´ë°¨ ¼Ö¼Ö
  2. 2¡®°ûºó ¼±¹ß¡¯ 8ÀÏ WBC ù ¸ðÀǰí»ç
  3. 3¸Þ½Ã¡¤ºÎ¾Ó°¡, MLS º£½ºÆ®11 ¼±Á¤¡¦½ÃÁð ÈĹݺΠÀÌÀû ¼ÕÈï¹ÎÀº ºüÁ³´Ù
  4. 4¡°Ç®»Ñ¸® ½ºÆ÷Ã÷ Áö¿ø, ±¹³»¿Ü ´ëȸ À¯Ä¡·Î ºÎ»ê üÀ°µµ½Ã µµ¾à¡±
  5. 5È«¸íº¸È£ ÇÙ½É È²Àιü ¡®¶Ç¡¯ ¾²·¯Á³´Ù
  6. 6·Ôµ¥ Å« Çü´Ô, ³»³â¿¡µµ »çÁ÷¿¡¼­ º¼ ¼ö ÀÖÀ»±î?
  7. 7MLS ¼® ´Þ ¶Ú ¼ÕÈï¹Î ¿ÃÇØÀÇ ½ÅÀÎ ÅõÇ¥ 2À§
  8. 8¡®ºÎ»ê ½Ã´ë¡¯ OKÀúÃàÀºÇà, 9ÀÏ Ã¹ Ȩ °³¸·Àü
  9. 9Àå¾ÖÀÎüÀü 3À§¡¦ºÎ»ê, ´ëÀåÁ¤ È­·ÁÇÑ Çdz¯·¹
  10. 10UCL ÄÚ¸®¾È´õºñ, À̰­ÀΠȰ¾à¿¡µµ ±è¹ÎÀç°¡ ¿ô¾ú´Ù
¿ì¸®ÀºÇà
³­Ä¡º´ ȯ¿ì¿¡ »õ »ý¸íÀ»
ÀǷᡤ»ýȰºñ ¾î¸Ó´Ï Ȧ·Î ºÎ´ã¡¦»çȸº¹±Í À§ÇÑ µµ¿ò Àý½Ç
·¹º§¾÷! ºÎ»ê±³Åë
ÀÌ·ûÂ÷ ÈÄ¸é¹øÈ£ÆÇ ´Ü¼Ó °­È­¡¦Àû¹ß Ä«¸Þ¶ó ºÎ»ê 120´ë Ãß°¡
  • °ñÇÁ´ëȸ
  • Á¦9ȸ ¸¾ÆíÇѺλê
  • Á¦27ȸ ±¹Á¦½Å¹® ºÎ»ê¸¶¶óÅæ´ëȸ
  • À¯Äܼ­Æ®
°È°í ½ÍÀº ºÎ»ê ±×¸°¿öÅ· ȨÆäÀÌÁö
±¹Á¦½Å¹® ´ë°ü¾È³»